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Locally stationary time series frequently appears in both finance and environmental

sciences (e.g., daily air pollutant concentration or financial returns). However, con-

structing the multi-step-ahead prediction interval for such time series remains an

open question. Hence, we extend the nonparametric regression model with auto-

regressive errors for equally spaced designs to the time series setup. We propose a

B-spline estimator for the trend function and a kernel estimator for the variance

function to implement the model. The prediction interval of multi-step-ahead future

observations is also constructed after fitting the autoregressive model of errors and

obtaining the quantile of prediction residuals. The proposed method is illustrated by

various simulation studies and an example of air pollutant data, containing 8 years of

daily air pollutant concentrations in Xi'an. Our results demonstrate that our method

outperforms others owing to its higher prediction accuracy and versatility.

K E YWORD S

air pollutants concentration, B-spline, kernel, locally stationary time series, prediction interval

1 | INTRODUCTION

A fundamental task of time series analysis is forecasting for its wide application in environment, economics and other disciplines. Prediction inter-

val (PI), the estimate of an interval wherein a future observation will fall with a certain probability, is indispensable for predictive inference

(Brockwell & Davis, 1991; Fan & Yao, 2008).

Many recent papers investigated PI based on various time series models. Particularly, Lori and William (1990) applied nonparametric boot-

strap to predict autoregression. Wang et al. (2014) and Kong et al. (2018) proposed a kernel estimator for the distribution function of unobserved

errors and multi-step-ahead prediction errors in autoregressive time series, respectively, based on residuals computed by estimating auto-

regressive coefficients using the Yule–Walker method. All of them successfully constructed multi-step-ahead PIs; however, they only focused on

the simple AR(p) model, which is inadequate for fitting most real data. Aneiros-Pérez et al. (2011) adopted a nonparametric view for time series

prediction using functional data techniques based on homogeneous errors and bootstrap residuals. De Livera et al. (2011) incorporated Box–Cox

transformations, Fourier representations with time-varying coefficients to complex seasonal time series and derived analytical expressions for

point forecasts and interval predictions under the assumption of Gaussian errors. Although inference results of the above models have been well

developed, predicting performance varies in different scenarios. As these models are insufficient for explaining the complex structure of some

data, they may obtain a non-smooth estimation owing to model misspecification. Moreover, they usually assume that residuals are normal or

asymptotically normal for short-term predictions, which is quite restrictive. This sometimes leads to a much wider PI than usual in practice

(Section 5).

To address the above issue, assuming a slowly changing stochastic structure is more realistic: that is, a locally stationary model

(Dahlhaus, 2012). Dette and Wu (2022) developed an estimator for the high-dimensional covariance matrix of a locally stationary process

with a smoothly varying trend. They then used this statistic to derive consistent predictors in nonstationary time series. The proposed pre-

dictor did not rely on fitting an autoregressive model or required a vanishing trend; however, they prioritized the point predictor rather
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than the PI. Little literature is available on PIs of locally stationary time series. We believe that the only relevant paper is Das and

Politis (2021), which is the first to combine one-step-ahead point predictors and PIs for model-free or model-based scenarios in the context

of locally stationary time series. The bootstrap method was used in constructing PIs; thus, they failed to establish a multi-step-ahead PI

owing to the lack of error distribution estimation. In our paper, we introduce a novel and applicable method for forecasting multi-step-

ahead future observations and establishing its corresponding PI under the locally stationary time series setting. Our proposed method is

applied to construct future air pollutants concentration PIs based on a large dataset comprising 8 years of daily air pollutant concentration

data in Xi'an. Our final results show that proposed PI achieves superior performance in comparison with its counterpart derived by the

seasonal ARIMA method.

Some commonly used methods for assessing model forecasting performance, such as out-of-sample and cross-validation techniques, do not

work in time series settings as the testing and training sets cannot be split randomly in the presence of dependence among temporally ordered

variables. PI performance is a good alternative approach for model assessment. Kong et al. (2018) highlighted that an “ideal” PI must be accurate

and effective. First, PI should be accurate as the probability of the unknown quantity being contained in the PI should be close to a predetermined

nominal level, 1�α. Second, PI must be effective, namely, the interval should be sufficiently narrow and, hence, useful in locating the unknown

quantity. Thus, we can compare the empirical coverage frequency of true values in the testing set and investigate the length and boundary of the

PI to assess PI efficiency.

The rest of the paper is organized as follows. Section 2 introduces the nonparametric regression model for a locally stationary time series and

provides an estimate of each component to construct multi-step-ahead PIs. Implementation details and simulation findings are reported in

Sections 3 and 4, respectively. In Section 5, we illustrate the proposed method by applying it to air pollutant concentration data and comparing its

performance with the seasonal ARIMA method.

2 | METHODOLOGY

Consider a real-valued time series dataset Ytf gTt¼1 spanning a long time interval, which usually contains complex nonstationary structures. To

consider nonstationarity, we extended the nonparametric regression model for equally spaced designs to the time series setup. Specifically, the

observed time series Ytf gTt¼1 is a realization from the following model:

Yt ¼m t=Tð Þþσ t=Tð ÞZt, t¼1,…,T, ð1Þ

where m(�) represents a slowly varying function known as a trend component possessing some degree of smoothness and σ 2(�) is the variance

function, allowing heteroscedasticity at different time points. Errors Ztf gTt¼1, assumed as stationary and weakly independent time series, satisfy

EZt ¼0 and EZ2
t ¼1 for model identification and are fitted an autoregressive model with order p as follows:

Zt ¼
Xp
k¼1

ϕkZt�kþεt, t¼ pþ1,…,T, ð2Þ

where the white noise fεtgTt¼pþ1 is independent and identically distributed (IID) with a mean of 0. Using this formulation, we can first separate the

smooth trend from noisy stochastic errors via smoothing techniques.

2.1 | Estimating the trend function m(�)

For model (1), B-spline is applied to approximate the trend function m(�). We provide a brief introduction to the B-spline smoothing method in the

following.

B-spline is widely used in nonparametrics for its computational simplicity and derivable asymptotic theory (Cai et al., 2019; Cao et al., 2012,

2016; Gu et al., 2014; Gu & Yang, 2015; Liu & Yang, 2010, 2016; Song & Yang, 2009; Wang & Yang, 2007, 2009; Wang et al., 2020; Xue &

Yang, 2006) for its applications in different scenarios. To describe the spline functions, we denote by tℓf gJsℓ¼1 a sequence of equally spaced points,

tℓ ¼ℓ= Jsþ1ð Þ, 1≤ℓ ≤ Js, 0 < t1 <…< tJs <1, called interior knots, which divides the interval [0, 1] into Jsþ1ð Þ equal subintervals

I0 ¼ 0,t1½ Þ, Iℓ ¼ tℓ,tℓþ1½ Þ,ℓ¼1,…,Js�1, IJs ¼ tJs ,1½ �. For any positive integer p, let t1�p ¼…¼ t0 ¼0 and 1¼ tJsþ1 ¼…¼ tJsþp be auxiliary knots. Let

H p�2ð Þ ¼H p�2ð Þ½0,1� be the polynomial spline space of order p on Iℓ,ℓ¼0,…,Js, which consists of all p�2ð Þ times continuously differentiable

functions on [0, 1], which are polynomials of degree p�1ð Þ on subintervals Iℓ,ℓ¼0,…,Js. We then denote by fBℓ,pðxÞ,1≤ℓ≤ Jsþpg the p-th order

B-spline basis functions of H p�2ð Þ, hence H p�2ð Þ ¼ PJsþp
ℓ¼1 λℓ,pBℓ,pðxÞ

���λℓ,p �ℝ,x� ½0,1�
n o

.

We propose to estimate the trend function m(�) using the following formula:
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m̂ð�Þ¼ arg min
gð�Þ �H p�2ð Þ

XT
t¼1

Yt�g t=Tð Þf g2:

The definition of m̂ð�Þ in (2.1) leads to

m̂ð�Þ�
XJsþp

ℓ¼1

β̂ℓ,pBℓ,pð�Þ, ð3Þ

with coefficients β̂1,p,…, β̂Jsþp,p

� � >
, solving the following least-squares problem:

β̂1,p,…, β̂Jsþp,p

� � > ¼ arg min
β1,p ,…,βJsþp,pf g � RJsþp

XT
t¼1

Yt�
XJsþp

ℓ¼1

βℓ,pBℓ,p t=Tð Þ
( )2

:

Applying elementary algebra, one obtains

m̂ð�Þ¼Bð�Þ > ðX > XÞ�1
X > Y, ð4Þ

where Y¼ Y1,…,YTð Þ > and the T� (Js+ p) design matrix X for spline regression is

X¼ B 1=Tð Þ,…,B T=Tð Þf g > ,

with Bð�Þ¼ B1,pð�Þ,…,BJsþp,pð�Þf g > .

2.2 | Estimating the variance function σ2(�)

Variance function σ 2(�) in model (1) measures the heteroscedastic variation in the errors et: where et ¼Yt�m t=Tð Þ, and t¼1,…,T. Errors

fetgTt¼1 are unobservable as m(�) is unknown. Following Cai et al. (2019), we replace m(�) with m̂ð�Þ in (4) and propose a kernel estimator of σ 2(�) as
follows:

σ̂2ðxÞ¼
PT

t¼1Khðt=T�xÞê2tPT
t¼1Khðt=T�xÞ

, ð5Þ

where êt ¼Yt� m̂ t=Tð Þ, h¼ hT >0 is the bandwidth, and K is a kernel function with KhðuÞ¼K u=hð Þ=h.

2.3 | Autoregressive coefficients estimation

Parameters of interest in model (2) are autoregressive coefficients ϕ¼ðϕ1,…,ϕpÞ > . According to Eq. (8.1.1) of Brockwell and Davis (1991), they

satisfy

ϕ¼Γ�1
p γp, Γp ¼ γði� jÞf gpi,j¼1, γp ¼ γð1Þ,…,γðpÞð Þ,

wherein γðlÞ¼EðZtZtþlÞ, l¼0,�1, �2,…, representing the autocovariance function of fZtgTt¼1. We denote Ẑt ¼ êt=σ̂ðt=TÞ and the sample

autocovariance function as

γ̂ðlÞ¼ T�1
XT�l

t¼1

ẐtẐtþl, 0≤ l ≤ T�1:

The classic Yule–Walker estimator of ϕ, a method of the moment estimator based on residuals fẐtgTt¼1, is defined by
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ϕ̂¼ Γ̂�1
p γ̂p, Γ̂p ¼ γ̂ði� jÞf gpi,j¼1, γ̂p ¼ γ̂ð1Þ,…, γ̂ðpÞð Þ: ð6Þ

2.4 | Constructing PI for YT + k

Following Kong et al. (2018), the k-step-ahead linear predictor ~Z
½k�
Tþk for ZT+ k, k≥1 based on fZtgTt¼1 is defined recursively by

~Z
½k�
Tþk ¼ϕ1

~Z
½k�1�
Tþk�1þ…þϕp

~Z
½k�p�
Tþk�p, ð7Þ

and satisfies

~Z
½k�
Tþk ¼ϕ½k�

1 ZT þ…þϕ½k�
p ZT�pþ1,

where the coefficient vector ϕ½k� ¼ ðϕ½k�
1 ,…,ϕ½k�

p Þ > is a polynomial function gk of ϕ¼ðϕ1,…,ϕpÞ > ,ϕ½k� ¼ gkðϕÞ, where gk is defined recursively by

repeated applications of (7).

Using the Yule–Walker estimator ϕ̂¼ðϕ̂1,…, ϕ̂pÞ
>

of ϕ in (6), we obtain a plug-in estimate ϕ̂
½k� ¼ ðϕ̂½k�

1 ,…, ϕ̂
½k�
p Þ

>
¼ gkðϕ̂Þ of ϕ̂

½k� ¼ gkðϕ̂Þ. We

denote Ẑ
½k�
Tþk as the data version of the linear predictor ~Z

½k�
Tþk :

Ẑ
½k�
Tþk ¼ ϕ̂

½k�
1 ẐT þ…þ ϕ̂

½k�
p ẐT�pþ1, ð8Þ

and ε̂½k�Tþk ¼ZTþk� Ẑ
½k�
Tþk as the k-step-ahead prediction residuals. Let F [k](x) denote the k-step-ahead prediction residual distribution and its α-th

quantile as q½k�α .

Furthermore, we propose an estimator q̂½k�n,α ¼ F̂
½k�� ��1

ðαÞ¼ inf x : F̂
½k�ðxÞ≥ α

n o
of q½k�α based on a two-step plug-in kernel distribution estimator

(KDE) F̂
½k�ðxÞ of F [k](x):

F̂
½k�ðxÞ¼

ðx
�∞

T�1
XT
t¼k

~K~h u� ε̂½k�t

� �
du, x�ℝ, ð9Þ

where ~h¼ ~hT >0 is the bandwidth, and ~K is a kernel function with ~K~hðuÞ¼ ~K u=~h
� �

=~h, and ε̂½k�t ¼ Ẑt� Ẑ
½k�
t ¼ Ẑt� ϕ̂

½k�
1 Ẑt�k�…� ϕ̂

½k�
p Ẑt�k�pþ1, k ≤ t≤ T

are prediction residuals.

As both m(�) and σ(�) are slowly-varying functions, approximating the value of the trend function and the variance function at time point T + k

with their values at time point T, namely, m(1) and σ(1), respectively, when k was small, is reasonable. Combining the k-step-ahead predictor Ẑ
½k�
nþk

and its corresponding quantile estimator, the ð1�αÞ-th PI for the k-step-ahead observation YT+ k is constructed as

m̂ð1Þþ σ̂ð1Þ Ẑ
½k�
Tþkþ q̂½k�n,α=2

� �
,m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ q̂½k�n,1�α=2

� �h i
: ð10Þ

3 | IMPLEMENTATION

To realize the proposed method, we need to obtain estimates of unknown parts m(�), σ(�) and quantile q½k�n,α=2 in (10).

Estimating the trend function m(�) mainly involves choosing the number of interior knots Js and the spline order p. The number of interior

knots Js, often considered as an unknown tuning parameter, is crucial for spline smoothing as the spline fitting can be sensitive to knots selection.

The spline estimator m̂ð�Þ is obtained from (3), with the number of interior knots considered as Js ¼ ½cT1=4loglogT�, where c is a tuning constant

and [a] denotes the integer part of a. The default value of the order is p¼4, namely, the cubic spline.

To derive σ̂2ðxÞ in (5), the quartic kernel KðuÞ¼15 1�u2
� �2

I uj j≤1f g=16 is chosen with the bandwidth h¼ chrot� log�1=2T, where c is a tuning

constant and the rule-of-thumb bandwidth is
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hrot ¼
35

PT
t¼1 ê2t �

P4
k¼0âk t=Tð Þk

n o2

n
PT

t¼1 2â2þ6â3 t=Tð Þþ12â4 t=Tð Þ2
n o2

2
64

3
75
1=5

, ð11Þ

in which âkð Þ4k¼0 ¼ argmin akð Þ4k¼0 � ℝ5

PT
t¼1 ê2t �

P4
k¼0ak t=nð Þk

n o2
. We have found in extensive simulations in which Js ¼ ½6T1=4loglogT� and h¼

0:2hrot� log�1=2T work quite well and are what we recommended.

Estimating the AR time series (2), which includes lag selection and parameter estimation, is conducted using Ẑt instead of Zt. The order p is

determined by the Akaike information criterion (AIC). After acquiring the Yule–Walker estimator of ϕ̂¼ðϕ̂1,…, ϕ̂pÞ
>
, we can obtain ϕ̂

½k�
by the fol-

lowing recursive formula:

ϕ̂
½k�
m ¼ ϕ̂

½k�1�
1 ϕ̂mþ ϕ̂

½k�1�
mþ1 , 1≤m≤ p�1, ð12Þ

ϕ̂
½k�
p ¼ ϕ̂

½k�1�
1 ϕ̂p, ð13Þ

with ϕ̂
½0�
m ¼ ϕ̂m for m¼1,…,p.

To estimate quantile q½k�α , the same kernel ~KðuÞ¼15 1�u2
� �2

I uj j≤1f g=16 is used in (9). The bandwidth ~h is denoted as ~h¼ 4=3Tð Þ1=5 ŝ, where

ŝ2 is the sample variance. Finally, the ð1�αÞ-th PI for future observations YT+ k is constructed as (10). Details of the computational algorithm are

provided in the following table.

TABLE 1 The 95% and 90% PIs' average length (inside the parentheses) and coverage frequencies of future points over 1000 replications
with normal distribution errors fεtgTþ5

t¼2

Point T 95% proposed PI 95% normal PI 90% proposed PI 90% normal PI

YTþ1 1000 0.841(1.715) 0.837(1.705) 0.775(1.433) 0.776(1.431)

2000 0.880(1.831) 0.876(1.819) 0.824(1.529) 0.834(1.527)

4000 0.897(1.886) 0.896(1.876) 0.836(1.577) 0.835(1.574)

8000 0.911(1.915) 0.909(1.906) 0.850(1.602) 0.852(1.600)

16,000 0.944(1.974) 0.944(1.969) 0.904(1.654) 0.904(1.652)

32,000 0.949(2.001) 0.945(2.002) 0.906(1.678) 0.902(1.676)

64,000 0.945(2.012) 0.924(2.009) 0.904(1.686) 0.905(1.685)

YTþ2 1000 0.800(2.036) 0.803(2.071) 0.735(1.736) 0.738(1.738)

2000 0.854(2.248) 0.858(2.262) 0.787(1.902) 0.776(1.898)

4000 0.891(2.360) 0.890(2.362) 0.844(1.986) 0.840(1.982)

8000 0.902(2.421) 0.902(2.419) 0.851(2.034) 0.846(2.030)

16,000 0.945(2.512) 0.940(2.509) 0.912(2.108) 0.910(2.105)

32,000 0.941(2.553) 0.928(2.557) 0.895(2.144) 0.891(2.141)

64,000 0.934(2.573) 0.932(2.571) 0.894(2.157) 0.895(2.155)

YTþ3 1000 0.751(2.153) 0.763(2.226) 0.672(1.858) 0.674(1.868)

2000 0.846(2.429) 0.852(2.469) 0.750(2.074) 0.758(2.072)

4000 0.899(2.587) 0.902(2.604) 0.842(2.190) 0.838(2.185)

8000 0.900(2.678) 0.902(2.684) 0.843(2.257) 0.838(2.252)

16,000 0.946(2.793) 0.947(2.793) 0.884(2.348) 0.884(2.344)

32,000 0.931(2.846) 0.924(2.852) 0.877(2.400) 2.858(2.388)

64,000 0.936(2.870) 0.932(2.868) 0.901(2.408) 0.902(2.406)

YTþ5 1000 0.682(2.209) 0.701(2.329) 0.612(1.930) 0.632(1.954)

2000 0.775(2.554) 0.778(2.629) 0.728(2.202) 0.726(2.206)

4000 0.884(2.769) 0.892(2.807) 0.821(2.361) 0.817(2.356)

8000 0.905(2.903) 0.910(2.919) 0.834(2.456) 0.834(2.450)

16,000 0.926(3.046) 0.929(3.053) 0.882(2.568) 0.886(2.562)

32,000 0.930(3.116) 0.925(3.126) 0.863(2.631) 0.855(2.618)

64,000 0.934(3.149) 0.935(3.148) 0.880(2.644) 0.880(2.641)
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TABLE 2 The 95% and 90% PIs' average length (inside the parentheses) and coverage frequencies of future points over 1000 replications
with mixture normal distribution errors fεtgTþ5

t¼2

Point T 95% proposed PI 95% normal PI 90% proposed PI 90% normal PI

YTþ1 1000 0.801(2.357) 0.820(2.419) 0.735(2.002) 0.740(2.030)

2000 0.866(2.451) 0.877(2.526) 0.822(2.090) 0.828(2.120)

4000 0.902(2.566) 0.911(2.655) 0.847(2.195) 0.850(2.228)

8000 0.915(2.619) 0.934(2.723) 0.866(2.248) 0.870(2.285)

16,000 0.954(2.681) 0.959(2.794) 0.908(2.306) 0.912(2.345)

32,000 0.941(2.220) 0.942(2.226) 0.896(1.879) 0.896(1.878)

64,000 0.950(2.224) 0.951(2.242) 0.889(1.889) 0.888(1.888)

YTþ2 1000 0.799(2.855) 0.811(2.938) 0.744(2.452) 0.746(2.465)

2000 0.822(3.076) 0.828(3.136) 0.742(2.629) 0.750(2.632)

4000 0.876(3.292) 0.881(3.344) 0.822(2.807) 0.821(2.806)

8000 0.915(3.406) 0.918(3.455) 0.844(2.902) 0.844(2.900)

16,000 0.920(3.509) 0.924(3.560) 0.881(2.990) 0.880(2.987)

32,000 0.923(2.841) 0.922(2.841) 0.894(2.402) 0.891(2.399)

64,000 0.946(2.873) 0.945(2.876) 0.882(2.412) 0.882(2.415)

YTþ3 1000 0.734(3.031) 0.773(3.156) 0.657(2.627) 0.664(2.648)

2000 0.790(3.338) 0.804(3.422) 0.738(2.867) 0.736(2.871)

4000 0.867(3.628) 0.872(3.687) 0.823(3.098) 0.824(3.094)

8000 0.928(3.790) 0.928(3.834) 0.854(3.224) 0.850(3.218)

16,000 0.937(3.923) 0.939(3.963) 0.886(3.332) 0.886(3.326)

32,000 0.923(3.168) 0.922(3.171) 0.897(2.680) 0.898(2.676)

64,000 0.944(3.208) 0.946(3.212) 0.892(2.699) 0.89(2.696)

YTþ5 1000 0.698(3.116) 0.718(3.300) 0.641(2.733) 0.642(2.769)

2000 0.754(3.516) 0.763(3.642) 0.706(3.045) 0.702(3.056)

4000 0.847(3.895) 0.854(3.976) 0.784(3.341) 0.785(3.337)

8000 0.900(4.118) 0.909(4.171) 0.842(3.509) 0.840(3.500)

16,000 0.938(4.293) 0.938(4.332) 0.855(3.644) 0.848(3.635)

32,000 0.931(3.470) 0.930(3.476) 0.871(2.938) 0.875(2.933)

64,000 0.943(3.522) 0.944(3.525) 0.908(2.963) 0.906(2.960)
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4 | SIMULATION STUDIES

In this section, we describe Monte Carlo simulations to examine the finite sample performance of the proposed method. Our data are generated

from the following model:

Yt ¼m
t

Tþ5

	 

þσ

t
Tþ5

	 

Zt, t¼1,…,Tþ5, ð14Þ

Zt ¼0:8Zt�1þεt, t¼2,…,Tþ5: ð15Þ

We set mðxÞ¼5þ4cosð2:5πxÞ and σðxÞ¼ ð5�expð�xÞÞ=ð5þexpð�xÞÞ in (14). The ID errors fεtgNt¼2 follow three different distributions: the

normal distribution N(0, 0.62), the mixture normal distribution 0:5Nð�0:5,0:62Þþ0:5Nð0:5,0:62Þ and the Laplace distribution Laplace 0,0:6=
ffiffiffi
2

p� �
,

which can ensure EZ2
t ¼1.

The sample size ðTþ5Þ is denoted as 1005, 2005, 4005, 8005 and 16,005, and realizations Ztf gTþ5
t¼�999 of size Tþ1005 are generated

from (15), with the first 1000 values deleted to guarantee the strict stationarity of Ztf gTþ5
t¼1 .

The dataset Ytf gTþ5
t¼1 is divided into a testing set Ytf gTþ5

t¼Tþ1 and a training set Ytf gTt¼1. In the following, we construct 90% and 95% the pro-

posed and normal PIs and compare their performance over 1000 replications.

TABLE 3 The 95% and 90% PIs' average length (inside the parentheses) and coverage frequencies of future points over 1000 replications
with Laplace distribution errors fεtgTþ5

t¼2

Point T 95% proposed PI 95% normal PI 90% proposed PI 90% normal PI

YTþ1 1000 0.887(1.801) 0.869(1.654) 0.814(1.422) 0.801(1.388)

2000 0.901(1.934) 0.882(1.772) 0.834(1.506) 0.832(1.487)

4000 0.926(2.016) 0.911(1.849) 0.876(1.558) 0.874(1.552)

8000 0.953(2.100) 0.934(1.933) 0.883(1.619) 0.885(1.622)

16,000 0.950(2.140) 0.931(1.973) 0.900(1.647) 0.902(1.655)

32,000 0.947(2.163) 0.934(1.997) 0.896(1.654) 0.896(1.666)

64,000 0.946(2.156) 0.934(1.992) 0.892(1.664) 0.888(1.678)

YTþ2 1000 0.823(2.070) 0.812(2.017) 0.765(1.722) 0.758(1.693)

2000 0.887(2.307) 0.872(2.207) 0.826(1.881) 0.816(1.852)

4000 0.912(2.455) 0.897(2.331) 0.854(1.975) 0.854(1.956)

8000 0.932(2.584) 0.918(2.453) 0.878(2.066) 0.877(2.059)

16,000 0.947(2.647) 0.932(2.514) 0.899(2.109) 0.898(2.110)

32,000 0.925(2.682) 0.910(2.550) 0.892(2.122) 0.894(2.128)

64,000 0.948(2.679) 0.942(2.548) 0.890(2.147) 0.888(2.137)

YTþ3 1000 0.767(2.155) 0.768(2.172) 0.694(1.835) 0.690(1.823)

2000 0.858(2.462) 0.848(2.413) 0.797(2.048) 0.790(2.025)

4000 0.902(2.660) 0.895(2.573) 0.842(2.178) 0.844(2.159)

8000 0.910(2.826) 0.898(2.723) 0.847(2.294) 0.851(2.285)

16,000 0.951(2.906) 0.94(2.799) 0.894(2.350) 0.882(2.349)

32,000 0.920(2.954) 0.916(2.845) 0.877(2.368) 0.880(2.373)

64,000 0.947(2.953) 0.942(2.845) 0.901(2.388) 0.902(2.397)

YTþ5 1000 0.704(2.195) 0.710(2.279) 0.617(1.898) 0.618(1.912)

2000 0.807(2.563) 0.806(2.575) 0.740(2.170) 0.738(2.161)

4000 0.860(2.819) 0.857(2.777) 0.808(2.345) 0.806(2.331)

8000 0.904(3.030) 0.892(2.962) 0.845(2.495) 0.844(2.486)

16,000 0.915(3.139) 0.901(3.060) 0.852(2.569) 0.852(2.568)

32,000 0.947(3.201) 0.938(3.119) 0.864(2.596) 0.865(2.601)

64,000 0.934(3.207) 0.929(3.123) 0.888(2.621) 0.889(2.631)
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90% the proposed PI: m̂ð1Þþ σ̂ð1Þ Ẑ
½k�
Tþkþ q̂½k�n,0:05

� �
,m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ q̂½k�n,0:95

� �h i
and 95% of the proposed PI: m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ q̂½k�n,0:025

� �
,

h
m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ q̂½k�n,0:975

� �
� given by (10).

90% the normal PI: m̂ð1Þþ σ̂ð1Þ Ẑ
½k�
Tþk�1:64ŝðkÞ

� �
,m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ1:64ŝðkÞ

� �h i
and 95% the normal PI: m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþk�1:96ŝðkÞ

� �
,

h
m̂ð1Þþ σ̂ð1Þ Ẑ

½k�
Tþkþ1:96ŝðkÞ

� �
�, where ŝðkÞ is standard deviation of ε̂½k�t based on the naive assumption that F [k](x) is normal.

Following one reviewer's suggestion, we also compare the proposed PI with the seasonal ARIMA PI, which is obtained by fitting the classical

ARIMA model (16), with the seasonal lag and orders selected by the Bayesian information criterion (BIC) automatically.

Tables 1–3 show the above 95% and 90% PIs' average length and coverage frequencies of YT + k for k¼1,2,3,5, namely, the percentage out

of 1000 replications of the true value of YT+ k being contained in the PI. Under the normal distribution errors fεtgTþ5
t¼2 , no significant difference can

be seen in coverage frequencies between the proposed and normal PIs; both intervals approach the nominal confidence level as the sample size

T increases (see Table 1). This is reasonable as the distribution of the errors fεtgTþ5
t¼2 is inherently normal. The lengths of two PIs are also very simi-

lar. One can find that the coverage frequency of YTþ1 and YTþ2 performs better than that of YTþ3 and YTþ5. It is reasonable as forecasts with

fewer steps always possess higher accuracy.

From Tables 2 and 3, we note that the coverage frequency of normal PI is always greater than that of the proposed PI in the case of mixture

normal distribution errors fεtgNt¼2. Conversely, it is lower in the case of Laplace distribution errors. In both scenarios, coverage frequency of the

proposed PI is closer to the predetermined level as T increases. This indicates that the length of the normal PI may be too wide in the mixture nor-

mal case and too narrow in the Laplace case. This partly explains why coverage frequencies of normal PI are lower or higher than the nominal

TABLE 4 The 95% and 90% ARIMA PIs' average length (inside the parentheses) and coverage frequencies of future points over 1000
replications with three different distribution errors fεtgTþ5

t¼2 : Normal, mixture normal and Laplace, respectively

Point T 95%, normal 95%, mixture normal 95%, Laplace 90%, normal 90%, mixture normal 90%, Laplace

YTþ1 1000 0.925(1.876) 0.932(2.638) 0.924(1.871) 0.866(1.574) 0.851(2.214) 0.876(1.570)

2000 0.920(1.860) 0.926(2.622) 0.935(1.861) 0.846(1.561) 0.864(2.201) 0.907(1.562)

4000 0.930(1.850) 0.927(2.612) 0.915(1.851) 0.865(1.553) 0.855(2.192) 0.866(1.553)

8000 0.916(1.844) 0.933(2.605) 0.911(1.845) 0.865(1.548) 0.863(2.186) 0.868(1.548)

16,000 0.915(1.840) 0.935(2.672) 0.910(1.840) 0.849(1.544) 0.860(2.242) 0.874(1.544)

32,000 0.922(1.876) 0.926(2.096) 0.920(1.876) 0.864(1.573) 0.866(1.759) 0.874(1.574)

64,000 0.918(1.873) 0.897(2.094) 0.920(1.873) 0.867(1.572) 0.846(1.757) 0.868(1.572)

YTþ2 1000 0.942(2.460) 0.924(3.447) 0.930(2.454) 0.872(2.064) 0.868(2.892) 0.883(2.059)

2000 0.927(2.419) 0.921(3.398) 0.928(2.420) 0.876(2.030) 0.847(2.852) 0.879(2.031)

4000 0.939(2.392) 0.932(3.372) 0.927(2.393) 0.886(2.008) 0.871(2.830) 0.878(2.009)

8000 0.933(2.376) 0.923(3.353) 0.936(2.377) 0.872(1.995) 0.863(2.814) 0.894(1.995)

16,000 0.897(2.365) 0.919(3.501) 0.925(2.366) 0.833(1.985) 0.845(2.938) 0.866(1.985)

32,000 0.932(2.436) 0.908(2.721) 0.904(2.437) 0.862(2.042) 0.876(2.284) 0.886(2.044)

64,000 0.914(2.428) 0.901(2.715) 0.936(2.428) 0.856(2.037) 0.842(2.562) 0.884(2.038)

YTþ3 1000 0.928(2.810) 0.929(3.920) 0.931(2.803) 0.879(2.358) 0.861(3.290) 0.883(2.352)

2000 0.935(2.742) 0.927(3.839) 0.923(2.742) 0.877(2.301) 0.858(3.222) 0.880(2.302)

4000 0.920(2.697) 0.917(3.796) 0.924(2.699) 0.851(2.263) 0.858(3.186) 0.876(2.265)

8000 0.926(2.671) 0.917(3.765) 0.934(2.672) 0.866(2.242) 0.852(3.159) 0.886(2.242)

16,000 0.905(2.653) 0.924(3.999) 0.920(2.653) 0.850(2.226) 0.848(3.356) 0.860(2.227)

32,000 0.904(2.746) 0.900(3.065) 0.906(2.749) 0.846(2.300) 0.862(2.574) 0.860(2.305)

64,000 0.911(2.731) 0.908(3.054) 0.920(2.732) 0.849(2.291) 0.866(2.562) 0.874(2.293)

YTþ5 1000 0.940(3.222) 0.920(4.452) 0.948(3.214) 0.889(2.704) 0.872(3.373) 0.897(2.697)

2000 0.943(3.093) 0.935(4.305) 0.918(3.096) 0.870(2.595) 0.856(3.613) 0.875(2.598)

4000 0.929(3.013) 0.930(4.228) 0.924(3.016) 0.874(2.529) 0.861(3.549) 0.878(2.531)

8000 0.931(2.967) 0.924(4.174) 0.925(2.968) 0.874(2.490) 0.860(3.503) 0.880(2.491)

16,000 0.923(2.936) 0.923(4.637) 0.914(2.936) 0.851(2.464) 0.858(3.891) 0.863(2.464)

32,000 0.910(3.037) 0.910(3.382) 0.928(3.045) 0.836(2.537) 0.830(2.842) 0.846(2.549)

64,000 0.915(2.993) 0.908(3.348) 0.918(2.996) 0.856(2.512) 0.864(2.807) 0.860(2.515)
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level. Such a difference in length provides strong evidence for using the proposed PI instead of the naive normal PI, in addition to coverage fre-

quencies discussed above.

From Table 4, the coverage frequency of the seasonal ARIMA PIs cannot approach the nominal level even when the sample size T is quite

large. Moreover, the average length of the seasonal ARIMA PI is much wider than that of the proposed PI in small sample size scenarios (see

Tables 1–3. Thus, our proposed method exhibits superior performance compared to the seasonal ARIMA method.

5 | REAL DATA ANALYSIS

The dataset used in the paper comprises daily air pollutant concentrations in Xi'an between January 1, 2013, and July 31, 2020, for 8 years and

30 seasons. Six major air pollutants concentrations measured in tons per square kilometre (t/km2) are CO, NO2, O3, PM10, PM2.5 and SO2. The

Xi'an Environmental Monitoring Center and China National Environmental Monitoring Center provided the dataset. There are 2769 observations

for each pollutant, and we remove invalid observations that only account for a small proportion, using the remainder as our dataset. Records of

each pollutant concentration were split into a testing set (the last five observations) and a training set (other observations).

TABLE 5 Descriptive statistics of each air pollutant concentration

Pollutant CO NO2 O3 PM10 PM2:5 SO2

Minimum 0.3 8 6 11 6 3

Maximum 5.7 129 301 903 589 163

Mean 1.38 47.40 96.31 120.77 65.65 20.53

Std. dev. 0.73 18.37 56.39 85.39 60.59 20.56

Q1 0.9 33 50 65 29 8

Median 1.2 44 86 97 45 13

Q3 1.6 59 136 148.25 77 25

Skewness 1.71 0.73 0.65 2.49 2.78 2.79

Kurtosis 7.12 3.24 2.75 14.0 14.1 13.0

F IGURE 1 Scatterplot of each air pollutant concentration
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F IGURE 2 Box plot of each pollutant daily concentration. Black bars inside the boxes represent medians

F IGURE 3 Fitted values of each air pollutant concentration with the seasonal ARIMA model
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5.1 | Pre-analysis exploration

Figure 1 shows the scatterplot of six pollutant concentration records. For each air pollutant concentration, time trend and cyclic features are

exhibited; hence, these are not stationary. Further augmented Dickey–Fuller (ADF) test for stationarity supports our findings. Table 5 gives brief

descriptive statistics of each pollutant concentration: minimum, maximum, mean, standard deviation, quantile, skewness and kurtosis. Table 5

shows that higher values of skewness are those of PM10, PM2.5 and SO2, corresponding to rapid increases in the data, as presented in Figure 1.

The kurtosis of the three pollutants is also large, relating to existing discontinuities in the data. Box plots are shown in Figure 2. O3 levels in the

warm season are higher than those in the cold season, whereas concentrations of the other five pollutants are most severe in winter. Therefore,

all pollutant concentrations, except O3, show a decreasing trend.

5.2 | Forecasts of air pollutants concentration from seasonal ARIMA model

The general seasonal ARIMA is denoted as ARIMA (p, d, q)(P, D, Q)s, where p is the number of parameters describing the autoregressive process,

d is the order of differencing, q is the number of parameters for the moving average process, P is the number of seasonal autoregressive terms,

D is the order of seasonal differencing, Q is the number of seasonal moving average terms and s is the number of periods in each season. Given

air pollutant concentration observations fYtgTt¼1, the seasonal ARIMA model can be written as

TABLE 6 95% the ARIMA PI and the proposed PI for future observations of each air pollutant

Pollutant Future observation ARIMA PI Proposed PI

CO YTþ1 [0.0276, 1.211] [0.555, 0.812]

YTþ2 �0:057,1:476½ � [0.627, 0.888]

YTþ3 �0:084,1:533½ � [0.632, 0.917]

YTþ4 �0:107,1:586½ � [0.638, 0.950]

YTþ5 �0:127,1:635½ � [0.606, 0.932]

NO2 YTþ1 [5.415, 48.356] [16.881, 28.469]

YTþ2 [1.250, 55.604] [16.312, 27.937]

YTþ3 [0.372, 57.816] [15.745, 28.326]

YTþ4 [0.213, 58.584] [15.286, 29.604]

YTþ5 [0.192, 59.012] [16.085, 31.090]

O3 YTþ1 [70.028, 201.505] [85.308, 190.703]

YTþ2 47:000,196:998½ � [67.538, 174.426]

YTþ3 [36.341, 194.824] [71.650, 188.302]

YTþ4 [32.698, 196.262] [82.701, 205.975]

YTþ5 [38.401, 206.896] [67.020, 195.309]

PM10 YTþ1 �42:096,152:525½ � [36.663, 59.536]

YTþ2 �69:120,179:151½ � 35:720,58:666½ �
YTþ3 �74:391,184:265½ � [33.157, 58.737]

YTþ4 �74:739,186:722½ � [32.198, 60.000]

YTþ5 �75:045,189:103½ � [32.410, 62.125]

PM2:5 YTþ1 �43:433,85:431½ � [20.166, 33.182]

YTþ2 �61:659,110:086½ � [24.184, 37.168]

YTþ3 �64:626,119:236½ � [24.533, 38.780]

YTþ4 �64:801,121:879½ � [23.427, 39.109]

YTþ5 �65:069,122:987½ � [23.756, 40.127]

SO2 YTþ1 �10:659,22:008½ � [4.049, 5.419]

YTþ2 �13:846,25:801½ � [3.697, 5.068]

YTþ3 �14:944,27:342½ � [3.446, 4.923]

YTþ4 �15:506,28:592½ � 3:411,5:052½ �
YTþ5 �16:301,30:210½ � [3.472, 5.194]
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ϕpðLÞΦP Lsð ÞrdrD
s Yt ¼ θqðLÞΘQ Lsð Þεt, ð16Þ

where L is the lag distance operator satisfying LdYt ¼Yt�d, and r is the differencing operator satisfying r¼1�L and rs ¼1�Ls, εt is the white

noise satisfying εt �WNð0,σ2Þ,ϕ and Φ include non-seasonal and seasonal autoregressive parameters, θ and Θ include the non-seasonal and sea-

sonal moving average parameters with ϕðLÞ¼1�
Xp

k¼1
ϕkL

k ,Φ Lsð Þ¼1�
XP

k¼1
ΦkðLsÞk , θðLÞ¼1�

Xq

k¼1
θkL

k and Θ Lsð Þ¼1�
XQ

k¼1
ΘkðLsÞk .

F IGURE 4 Each air pollutant concentration with its trend function estimator m̂ð�Þ (solid line)

F IGURE 5 The scatterplot of ê2t for each pollutant, its variance function estimator σ̂2ð�Þ (solid line)
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Considering cyclic recurrences in the data, a seasonal ARIMA model with a lag s¼365 is applied for each air pollutant concentration, respec-

tively. We specify the orders p, d, q, P, D and Q using the BIC and then estimate coefficients by the least-squares method. Figure 3 shows the

estimation results with the original points in red and fitted values in black. Corresponding 95% PIs up to five steps ahead are displayed in the third

column of Table 6.

The seasonal ARIMA model may perform well in fitting, but usually has a large predicting variance and much smaller lower prediction bound,

sometimes even being a negative number. This is clearly unrealistic as the concentration value of air pollutants is always positive. Additionally,

some PIs in Table 6 are so wide that they almost cover the entire range of data. Hence, all data points fall into the PI, making it lose effect in sta-

tistical inference.

5.3 | Forecasts of air pollutants concentration by the proposed method

We first separate the trend function and estimate the variance function in (1) via nonparametric regression. Figure 4 depicts the smooth estimate

m̂ð�Þ for each pollutant concentrations in the training dataset. The estimator perfectly captures the pattern and reflects overall trend of air pollut-

ant concentration data. Compared with the estimator in the seasonal ARIMA model, it is not that noisy and fluctuant. The variance estimator of

each air pollutant concentration σ̂2ð�Þ is displayed in Figure 5.

After fitting the autoregressive model of errors and obtaining the quantile of fitted residuals, we established PIs of up to five steps ahead for

each air pollutant. The fourth column of Table 6 exhibits PIs for future concentrations YTþ1,…,YTþ5. Clearly, these PIs are much narrower than the

derived counterparts by the seasonal ARIMA method, demonstrating high accuracy and practicality of our method. To further visualize the

pointwise multi-step-ahead PI, Figure 6 shows plots of ARIMA estimation, the proposed estimation, 95% pointwise the ARIMA PI and the pro-

posed PI of the last five observations (testing set) for each air pollutant concentration.

In all panels, the true air pollutant concentration values are entirely covered by ARIMA PIs, whereas some true values fall outside of the pro-

posed PIs. ARIMA PIs seem to perform better at capturing future true values but at the price of precision. Table 6 and Figure 6 show that the

ARIMA PI is much wider than the proposed PI on average. Therefore, they are substantially less useful in locating the whereabouts of the future

value. The proposed PI achieves better balance between coverage probability and accuracy. Moreover, from Figure 6, one can easily find that the

F IGURE 6 Plots of ARIMA estimation, proposed estimation, 95% pointwise the ARIMA PI and the proposed PI of the last five observations
for each air pollutant concentration
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proposed estimation has a smaller bias, which is closer to the future true value than the ARIMA estimation, which further reveals a positive confir-

mation of our proposed method.

6 | CONCLUDING REMARKS

Our study aims to construct a multi-step-ahead PI for a locally stationary time series. Hence, we propose a B-spline estimator for the trend func-

tion and a kernel estimator for the variance function. The quantile estimator is obtained after fitting the autoregressive model of errors and PIs

for multi-step-ahead future observations are constructed using the estimated quantiles. We believe this is the first study of constructing reliable

multi-step-ahead PIs by nonparametric regression in the local stationary time series setting. Our proposed method is applied for interpreting the

underlying dynamics of air pollutant concentration data and forecasting future concentrations, which is helpful for pollutant management and

early prevention.
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